FREE MINIMAL RESOLUTIONS AND THE BETTI NUMBERS OF THE SUSPENSION OF AN n-GON
نویسنده
چکیده
Consider the general n-gon with vertices at the points 1,2, . . . ,n. Then its suspension involves two more vertices, say at n+1 and n+2. Let R be the polynomial ring k[x1,x2, . . . ,xn], where k is any field. Then we can associate an ideal I to our suspension in the Stanley-Reisner sense. In this paper, we find a free minimal resolution and the Betti numbers of the R-module R/I.
منابع مشابه
Characteristic-independence of Betti numbers of graph ideals
In this paper we study the Betti numbers of Stanley-Reisner ideals generated in degree 2. We show that the first six Betti numbers do not depend on the characteristic of the ground field. We also show that, if the number of variables n is at most 10, all Betti numbers are independent of the ground field. For n = 11, there exists precisely 4 examples in which the Betti numbers depend on the grou...
متن کاملTHE LCM-LATTICE in MONOMIAL RESOLUTIONS
Describing the properties of the minimal free resolution of a monomial ideal I is a difficult problem posed in the early 1960’s. The main directions of progress on this problem were: • constructing the minimal free resolutions of special monomial ideals, cf. [AHH, BPS] • constructing non-minimal free resolutions; for example, Taylor’s resolution (cf. [Ei, p. 439]) and the cellular resolutions •...
متن کاملThe Betti poset in monomial resolutions
Let P be a finite partially ordered set with unique minimal element 0̂. We study the Betti poset of P , created by deleting elements q ∈ P for which the open interval (0̂, q) is acyclic. Using basic simplicial topology, we demonstrate an isomorphism in homology between open intervals of the form (0̂, p) ⊂ P and corresponding open intervals in the Betti poset. Our motivating application is that the...
متن کاملBetti Numbers and Shifts in Minimal Graded Free Resolutions
Let S = K[x1, . . . ,xn] be a polynomial ring and R = S/I where I ⊂ S is a graded ideal. The Multiplicity Conjecture of Herzog, Huneke, and Srinivasan states that the multiplicity of R is bounded above by a function of the maximal shifts in the minimal graded free resolution of R over S as well as bounded below by a function of the minimal shifts if R is Cohen–Macaulay. In this paper we study t...
متن کامل0 Ju n 20 05 Resolutions of ideals of six fat points in P 2
The graded Betti numbers of the minimal free resolution (and also therefore the Hilbert function) of the ideal of a fat point subscheme Z of P are determined whenever Z is supported at any 6 or fewer distinct points. We also handle a broad range of cases in which the points can be infinitely near, related to the classification of normal cubic surfaces. All results hold over an arbitrary algebra...
متن کامل